On the (In)stability of Dominance Hierarchies in the Cichlid Fish *Oreochromis mossambicus*

Rui F. Oliveira and Vitor C. Almada

Unidade de Investigação em Eco-Etologia, Instituto Superior de Psicologia Aplicada, R. Jardim do Tabaco, Lisbon, Portugal

Dominance hierarchies were studied during 8 weeks in eight heterosexual captive groups of *Oreochromis mossambicus* at the onset of sexual maturity. Linearity was assessed for each group on a weekly basis based on the Landau's index (h) and on the procedure described by Appleby [Appleby MC (1983): Animal Behaviour 31:600–608]. Week-to-week stability of the hierarchical structures was measured using the Burk's stability index (b) and Spearman rank correlation coefficients for the ranks of fishes in consecutive weeks. The two measures of stability showed a high level of concordance but the Spearman rank correlations were more conservative in detecting cases of stability. Although most dominance structures were linear they were unstable from week to week. Dominant individuals were less likely to experience rank reversals than subordinates. Rank reversals were especially likely among hierarchical neighbors. Dominance hierarchies did not stabilize in the time span of this study. © 1996 Wiley-Liss, Inc.

Key words: dominance, stability, linearity, cichlids

INTRODUCTION

There is a very extensive literature on dominance hierarchies in animal groups [see Gauthreaux, 1978; Dewsbury, 1982 for references in different taxa]. Many studies have focused on the dominance structure, i.e., linear vs. nonlinear [e.g., Chase, 1974, 1982, 1985; Appleby; 1983; Jackson, 1988; Jackson and Winnegrad, 1988; Iverson and Sade, 1990; Rothstein, 1992]. There are, however, fewer studies that deal with the temporal variation of these hierarchical structures in nonprimate animals [e.g., Guhl, 1968; Cain and Baenninger, 1980; Elwood and Rainey, 1983].

Received for publication March 7, 1995: accepted May 4, 1995.

Address reprint requests to Rui F. Oliveira, Unidade de Investigação em Eco-Etologia, Instituto Superior de Psicologia Aplicada, R. Jardim do Tabaco 44, P-1100 Lisbon, Portugal.

© 1996 Wiley-Liss, Inc.
establish territories within these aggregations where they dig pits (nests), to which they attract a succession of females. Spawning takes place in the nest. The female quickly takes eggs and sperm into her mouth where fertilization takes place, and leaves the arena (Bruton and Boltt, 1975). In the wild, the embryos and fry are brooded in the females’ mouth during 20–22 days (Bruton and Boltt, 1975).

Subjects and Procedures

The fish used in the present study came from a single brood from a stock kept in our laboratory which is derived from the Vasco da Gama Aquarium stock, that originated from individuals collected at Incomati River (Mozambique) in the early 1970s. Individuals were reared in three stock tanks until they were 9 months old (males ranging from 80.7 to 36.6 mm standard length, and females ranging from 71.4 to 34.3 mm standard length), when the experimental groups were formed. At this age the onset of sexual maturity was detected as revealed by the first appearance of dark individuals and nest beginnings in the stock tanks. Eight groups of six individuals were established in standard aquaria (62 x 34 x 39 cm³) and were observed weekly for 8 consecutive weeks. Although we tried to keep the sex ratio at 1:1, difficulties in sexing the fish at this stage led to some variation in sex ratio among the groups (3 groups had 3 males:3 females and five groups each had 4 males:2 females). To confirm the sex of each fish, individuals were sacrificed at the end of the experiment with an overdose of the anaesthetic quinaldine (Sigma). Sexing was achieved by direct inspection of the gonads, and the aceto-carmine coloration method proposed by Guerrero and Shelton (1974) was used when necessary. Fish were fed commercial food flakes, and were kept at 24 ± 2°C with a photoperiod of 12L:12D.

Behavioral Observations

In each group, fish were recognized individually by natural markings and by relative size differences. Behavioral observations were conducted following a behavioral sampling procedure [see Martin and Bateson, 1993] for agonistic interactions, in periods of 5 min each. Six such observations were performed per group per week, comprising an observation effort of 30 min per group each week. Observations were conducted between 11 a.m. and 2 p.m.

We considered that an agonistic interaction had occurred when one or more of the following behavior patterns was seen: approach, charge, butting, biting, chasing, lateral and frontal display, circling, mouth fighting, pendelling, fleeing, and submission. A detailed description of these behavior acts may be found in Baerends and Baerends van Roon [1950] and in Neil [1964]. We also recorded the identity of the participants and the outcome of the interactions. An individual was considered a loser in an agonistic interaction when he retreated, adopted a submissive posture, or fled from the opponent.

Data Analysis

Two dominance indexes were computed: a) V/V+D, number of victories over the total number of interactions in which the fish participated; b) V-D, the difference between the number of victories and defeats for each fish. The former index was demonstrated to be highly correlated with the rank order of the individuals determined from the analysis of sociometric matrices [Oliveira and Almada, 1995] and has often been used by other authors [Barlow and Ballin, 1976; Winberg et al., 1991; Gómez-Laplaza
Fig. 1. Variation of the Landau's index of linearity (h) (mean ± SD for the eight groups) along the 8 weeks of study.

advantage of allowing one to define cut off values that can be related in a simple way to specific percentages of the variance explained, which facilitates comparisons between studies.

The two measures of stability used were found to yield similar results (Cohen's K: concordance observed = 89.3% of the cases, n = 56, K = 0.780, P < 0.001), although the Spearman rank correlations were more conservative than the b index (number of stability cases [S] detected by each of the measures: $S_a = 21/56; S_b = 25/56$). In face of these results we decided to adopt the more conservative r_s, and the data presented hereafter are based on this measure.

The dominance structure of most groups was shown to be unstable from week to week: three groups yielded stable structures in three of seven week-to-week transitions, three other groups in two of seven, one group in one of seven, and one group in five of seven transitions.

In Figure 2 we present the temporal variation of the r_s along the consecutive weeks. Although the average r_s increased from the beginning of the experiment to the 7th week there is no significant variation with time (ANOVA repeated measures: $F_{6,42} = 1.342$, $P = 0.26$). Thus, in the groups studied high levels of linearity do not mean that the groups are stable.

In Figure 3 we present data on the variability of the occurrence of reversals as a function of rank order position. Inspection of Figure 3 shows a marked contrast between the first rank and the others, and a tendency to higher rates of reversals for intermediate rank positions. ANOVA results confirmed the effect of rank order position on the number of reversals (one-way ANOVA: $F_{4,46} = 7.815$, $P < 0.001$). Multiple comparisons revealed a significant difference between rank 1 and all the others ($P < 0.01$) and between rank 2 and ranks 3 and 4 ($P < 0.05$). Thus, the more dominant fish of each group are more likely to preserve their position than subordinates.

A comparison of the number of reversals between the two sexes failed to reveal any significant difference (males: $n = 29$, mean ± SD = 8 ± 4.13; females: $n = 19$, mean ± SD = 9.42 ± 2.66; t test: $t = 1.327$, $P = 0.191$).
Despite the occurrence of reversals in rank among group members from week to week, this finding raises the following three issues:

1. It is possible that rank orders are not the real relevant point when characterizing a social structure. The fact that an observer is able to scale individuals in an ordered sequence of ranks does not mean that animals without sophisticated cognitive systems are themselves able to categorize other group members in precise ranks. It is more likely that animals may perceive simple categories such as those that are much stronger, those that are less stronger, and those with which the relationships are uncertain [Appleby, 1993; but see also Freeman et al., 1992]. In this respect it is also likely that the most relevant difference that matters for the group members is whether the rank is high or low. Bolles [1981] pointed out that even for a human observer it is easier to "see who the alpha animal is (...)" (but) it takes the careful observation and skillful data analysis of the behavioral scientist to identify the fifth and sixth dominant animals in a group of twelve, (...)."

In a previous study, we found that although a linear rank order can be defined, the dominant member of each group was involved in the great majority of the interactions that occurred in that group [Oliveira and Almada, 1995]. Cain and Baenninger [1980] also found that, in captive male groups of the Siamese fighting fish, the alpha and omega males are clearly defined in the dominance structure while midranking males are of comparable status, and that the dominant male of each group participated in the great majority of the agonistic interactions of the group.

Two findings in the present work seem to support this view: the greater stability in rank of the dominant fishes and the fact that reversals are especially frequent among rank neighbors.

2. To what extent is the presence of linearity compatible with such a scheme? The persistence of linearity in successive dominance structures can be explained if the basic changes in the structure are caused by reversals in contiguous positions in the rank order, i.e., neighbors in a hierarchy might view each other as neither clearly dominant nor subordinate, as opposed to categories perceived as clearly dominant and clearly subordinate. In fact, in a previous study we found that symmetrical fights are more common between rank neighbors [Oliveira and Almada, 1995], a result also found for other species [e.g., Nelissen, 1985; Andries and Nelissen, 1990].

3. Concerning the high level of instability found it is important to remember that the subjects were at the onset of sexual maturity, and it is likely that their relative fighting ability [or their resource holding power; see Parker, 1974] could undergo rapid changes as new fish mature. In Xiphophorus variatus Borowsky [1973, 1978, 1987] found that maturing males inhibit the maturation of other males that continue to grow and mature later and at a larger size, a pattern that generates a kind of a compensatory tactic among individuals.

Even in adult males of O. mossambicus each territorial male leaves the territory after some days of occupancy [Neil, 1964], apparently when body reserves are depleted [see Bowen, 1984], and vacated territories are quickly reoccupied by other fish [Neil, 1966]. Such shifts are also likely to lower the stability of social relationships in a group.

The processes mentioned above emphasize the importance of clearly specifying a given time scale and biological peculiarities of the species studied when collecting data.

Oliveira RF, Almada VC (1995): Dominance hierarchies and social structure in captive groups of the Mozambique tilapia *Oreochromis mossambicus* (Teleostei, cichlidae). (Submitted for publication.)

